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 

Abstract— The SMAP (Soil Moisture Active Passive) mission 

provides global surface soil moisture product at 36 km resolution 

from its L-band radiometer. While the coarse resolution is 

satisfactory to many applications there are also a lot of 

applications which would benefit from a higher resolution soil 

moisture product. In this paper the SMAP radiometer-based soil 

moisture product was downscaled to 1 km using MODIS 

(Moderate Resolution Imaging Spectroradiometer) data, and 

validated against airborne data from the PALS (Passive Active L-

band System) instrument. The downscaling approach uses 

MODIS land surface temperature and normalized difference 

vegetation index to construct soil evaporative efficiency, which is 

used to downscale the SMAP soil moisture. The algorithm was 

applied to one SMAP pixel during the SMAP Validation 

Experiment 2015 (SMAPVEX15) in a semiarid study area for 

validation of the approach. The results showed that the approach 

had reasonable skill (root mean square difference of 0.053 m3/m3 

for 1-km resolution and 0.037 m3/m3 for 3-km resolution) in 

resolving high resolution soil moisture features within the coarse 

scale pixel. The success benefits from the fact that the surface 

temperature in this region is controlled by soil evaporation, the 

topographical variation within the chosen pixel area is relatively 

moderate and the vegetation density is relatively low over most 

parts of the pixel. The analysis showed that the combination of the 

SMAP and MODIS data under these conditions can result in a 

high resolution soil moisture product with an accuracy suitable for 

many applications. 

 
Index Terms— SMAP, MODIS, Soil Moisture, LST, NDVI, 

PALS 

I. INTRODUCTION 

Soil moisture has a critical role in water and energy balance 

processes at the interface between the land surface and the 

atmosphere. It determines the partitioning of the incoming solar 

and atmospheric radiation into latent, sensible, and ground heat 

fluxes, and the partitioning of the precipitation into surface 

runoff and infiltration. It has an important impact on 

agricultural and irrigation management practices, food 
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production and the organization of natural ecosystems and 

biodiversity. Low frequency passive microwave remote sensing 

has been established as the primary tool for global retrieval of 

soil moisture due to its sensitivity to subsurface soil moisture 

and relative insensitivity to vegetation [1]. The NASA Soil 

Moisture Active Passive (SMAP) [3] and European Space 

Agency Soil Moisture Ocean Salinity (SMOS) [2] missions 

utilize L-band radiometers to map global soil moisture every 2-

3 days. Both missions use instrument technologies that result in 

aperture sizes that provide data with a spatial resolution of 

about 40 km [4], [5]. However, many applications would 

benefit from significantly finer spatial resolution (e.g. [6]). 

SMAP originally included also an L-band synthetic aperture 

radar at 1-3 km resolution, which was intended to downscale 

the radiometer-based soil moisture measurements to a 9 km 

resolution [7]. However, the radar failed after about 3 months 

of operation. In this paper, an alternative downscaling approach 

is applied to SMAP data. 

Several approaches have been proposed for soil moisture 

downscaling. Some of them use fine resolution microwave 

measurements (e.g., [8], [9]) and some use measurements at 

optical wavelengths (e.g., [10], [11]). These algorithms include 

approaches where thermal infrared land surface temperature 

(LST) signatures are used as the main source of information to 

disaggregate the coarse resolution soil moisture pixels into finer 

ones. The algorithm applied in this paper to downscale the 

coarse resolution SMAP radiometer-based soil moisture 

product is based on the relationship between soil evaporative 

efficiency (SEE) and soil moisture [12]. In [13] an operational 

algorithm for SMOS downscaling with MODIS data using the 

SEE-soil moisture relationship was presented. 

 In order to assess the quality of the downscaled soil moisture 

values, reference soil moisture observations are required. In situ 

measurement networks are typically used in soil moisture 

validation. However, they are not optimal for assessing the 

spatial patterns that the downscaling approaches are set to 
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resolve. Problems arise from resolution cell representation, 

station to station biases and consistency of data records. A more 

robust approach is to use a higher resolution remote sensing 

instrument to capture the spatial patterns. Airborne microwave 

radiometers at L-band frequency can achieve much finer 

resolution than their spaceborne counterparts. A field 

experiment for soil moisture validation of SMAP was 

conducted in southern Arizona in August 2015 called SMAP 

Validation Experiment 2015 (SMAPVEX15). In this 

experiment, an airborne L-band instrument PALS (Passive 

Active L-band Sensor) was deployed to measure an area 

consisting of three SMAP pixels on seven days. The 

SMAPVEX15 data set offers a uniquely appropriate reference 

soil moisture data set for testing the algorithm for two reasons. 

First, the soil moisture disaggregation methods utilizing LST 

perform optimally when surface temperature is controlled 

mainly by soil evaporation. This is generally the case in the 

SMAPVEX15 domain. Second, testing a downscaling 

algorithm requires at some spatial heterogeneity in the 

measured soil moisture fields. The experiment was designed to 

coincide with North American Monsoon, which resulted in 

small scale convective precipitation events that created very 

heterogeneous scenes in terms of soil moisture [14].  

Here we present results of SMAP soil moisture product 

downscaling using MODIS data over the SMAPVEX15 domain 

and validation with the PALS 1-km soil moisture 

measurements. 

II. DISAGGREGATION ALGORITHM 

The higher resolution soil moisture is estimated by using the 

difference between the high resolution SEE and the average 

SEE within the coarser scale pixel. This difference is multiplied 

by the relationship of soil moisture and SEE before adding to 

the soil moisture retrieved with SMAP: 

𝑆𝑀 = 𝑆𝑀𝑆𝑀𝐴𝑃 +
𝜕𝑆𝑀

𝜕𝑆𝐸𝐸
(𝑆𝐸𝐸 − ⟨𝑆𝐸𝐸⟩𝐶) 

(1) 

where 𝑆𝑀𝑆𝑀𝐴𝑃  is the SMAP soil moisture for the pixel (coarse 

resolution) [m3/m3]; 𝜕𝑆𝑀 𝜕𝑆𝐸𝐸⁄  is the partial derivative of soil 

moisture evaluated with respect to SEE [m3/m3]; SEE denotes 

SEE at the 1-km resolution [-], and ⟨𝑆𝐸𝐸⟩𝐶  is the spatially 

averaged SEE [-], in which C stands for coarse scale. SEE is 

estimated as follows: 

𝑆𝐸𝐸 =
𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑠

𝑇𝑠,𝑚𝑎𝑥 − 𝑇𝑠,𝑚𝑖𝑛
 

(2) 

where the soil skin temperature [K] is defined as: 

𝑇𝑠 =
𝑇𝑀𝑂𝐷𝐼𝑆 − 𝑓𝑣 (𝑇𝑣,𝑚𝑖𝑛 + 𝑇𝑣,𝑚𝑎𝑥) 2⁄

1 − 𝑓𝑣
 

(3) 

and the end members of soil (subscript s) and vegetation 

(subscript v) temperature Ts,min, Ts,max, Tv,min, and Tv,max are 

estimated as described below. TMODIS stands for the altitude 

corrected land surface temperature from MODIS [K], and fv is 

the fractional vegetation cover [-] estimated as follows: 

𝑓𝑣 =
𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆 − 𝑁𝐷𝑉𝐼𝑠
𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠

 
(4) 

where NDVIMODIS is the normalized difference vegetation index 

from MODIS [-], and NDVIs and NDVIv stand for NDVI 

fraction for bare and full vegetation cover, respectively. The 

altitude effect on the surface temperature is accounted for 

within each pixel by using a coefficient of 6°C/km as given in 

[15]. 

The end members of the temperature range are determined 

within the coarse scale pixel following the approach presented 

in [15] accounting for the fact that the selected pixel in the 

SMAPVEX15 domain has a generally low amount of 

vegetation with fv < 0.5: 

𝑇𝑠,𝑚𝑖𝑛 = min⁡(𝑇𝑀𝑂𝐷𝐼𝑆) 
𝑇𝑣,𝑚𝑖𝑛 = min⁡(𝑇𝑀𝑂𝐷𝐼𝑆) 
𝑇𝑠,𝑚𝑎𝑥 = max⁡(𝑇𝑀𝑂𝐷𝐼𝑆) 

𝑇𝑣,𝑚𝑎𝑥 = max⁡(
𝑇𝑀𝑂𝐷𝐼𝑆 − 𝑇𝑠,𝑚𝑎𝑥(1 − 𝑓𝑣)

𝑓𝑣
) 

(5) 

A critical part in the algorithm is the estimation 

of⁡𝜕𝑆𝑀 𝜕𝑆𝐸𝐸⁄ . In this study, the following approximation was 

used: 

𝜕𝑆𝑀 𝜕𝑆𝐸𝐸⁄ = 𝑎
1

𝑁
∑

𝑆𝑀𝑆𝑀𝐴𝑃,𝑖

⟨𝑆𝐸𝐸⟩𝐶,𝑖

𝑁

𝑖=1

 

(6) 

where N is the number of days and a is an experimental tuning 

parameter. In this study, a=0.5 was used.  

III. DATA 

A. SMAPVEX15 and PALS Soil Moisture Data 

The SMAPVEX15 field experiment was carried out in 

southern Arizona, USA (31.7°N, 110.3°W) between August 2 

and 18, 2015 [14]. The objective of the experiment was the 

validation of SMAP soil moisture products, particularly to 

obtain a data set for assessment of spatial downscaling 

techniques. The campaign domain extended over three 36-km 

SMAP pixels that were covered with the airborne PALS 

instrument seven times. In situ soil moisture measurements 

consisted of a permanent network that was augmented with a 

temporary network and manual sampling. The location and 

timing of the experiment was chosen to capture spatially 

heterogeneous soil moisture conditions. In this region, the 

North American Monsoon generates small scale convective 

storms that can result in highly variable soil moisture [16]. The 

landscape of the region is characterized by shrub and grass 

rangeland. The domain includes significant variation in 

elevation with lowest points at about 1000 m above mean sea 

level (MSL) and mountains reaching 2600 m above MSL. This 

has a notable impact on the land surface temperature 

distribution, and subsequent soil moisture, across the domain. 

Figure 1 shows the digital elevation model (DEM) and 

normalized difference vegetation index (NDVI) on August 2, 

2015 based on MODIS. The analysis in this study focuses on 

the SMAP pixel outlined in the figure with a square. Within this 

particular pixel area, the elevation variation and amount of 

vegetation is moderate. See [14] for more details about the 

experiment domain. 
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The PALS instrument collects coincident (in time and place) 

radar and radiometer measurements [17]. Both measurements 

are obtained through the same antenna in a fast-switching 

sequence. PALS has been used in several soil moisture studies 

in the past in various configurations (e.g., [18]-[22]). During 

SMAPVEX15, PALS was installed on a DC-3 aircraft. For 

SMAPVEX15, the flights were made at an altitude of 2300 m 

above ground. The instrument provides a footprint of 1100 m 

(along scan) by 1500 m (radially) on the ground with an 

effective resolution of about 1200 m (square root of the area of 

the footprint ellipse). The PALS brightness temperature 

observations were translated into soil moisture as described in 

[14]. The soil moisture was assessed with respect to in situ 

measurements in the Walnut Gulch Experimental Watershed 

(WGEW); the RMSD was found to be 0.016 m3/m3 and the 

correlation 0.83.  

B. SMAP Soil Moisture Data 

The SMAP Level 2 Soil Moisture Passive (L2SMP) product 

was used in this study. Details of the SMAP L2SMP algorithm 

are presented in [23]. The baseline algorithm uses vertically 

polarized brightness temperature and a single channel algorithm 

[24]. The soil moisture retrieval takes place on the SMAP 36-

km EASE-2 grid. Because the grid samples the ground in 

intervals of 36-km, SMAP developed an additional process for 

retrieving the 36-km soil moisture at 3-km intervals. This so-

called “validation grid” processing allows placing the 36-km 

retrieval pixels optimally with respect to in situ stations to 

reduce uncertainties arising from misalignment of the retrieval 

and the ground-based reference data. A centered validation grid 

pixel was defined over the WGEW. The analysis here focuses 

on the 6 AM overpasses, which is the nominal observation time 

for SMAP; because it is expected that early morning condition 

surface and vegetative thermal conditions are more consistent 

with the isothermal assumptions made in the retrieval 

algorithm. 

C. MODIS Data 

The daily L3 MODIS/Terra LST and emissivity product on 

the global 1-km grid (MOD11A1, Version 5) was used for LST 

[25], and the 16-day L3 MODIS/Terra vegetation index product 

on the global 250-m grid (MOD13A1, Version 5) was used for 

NDVI [26]. The local overpass time for the data acquisitions 

was around 10:30 AM. The LST data was resampled and NDVI 

data aggregated onto a 1-km grid over the domain. The quality 

flags of MOD11A1 were used to screen out LST data of 

questionable quality for determining the soil and vegetation end 

members (see Section II). Only MODIS data with a quality flag 

that showed good quality were used with one exception. It was 

allowed that the average emissivity error was within 0.02 (as 

opposed to 0.01) because this significantly increased the 

available data. The quality flagging procedure resulted in the 

omission of the second (August 5) and the last PALS flight day 

(August 18).  

IV. RESULTS 

The algorithm described in Section II was applied to the 

SMAP and MODIS data on each PALS flight day over the pixel 

highlighted in Figure 1. The area was required to be at least 50% 

cloud free, which was the case on the PALS flight days. As 

mentioned earlier, the SMAP pixel was chosen so that the 

downscaled area does not include large elevation changes, 

which would cause artifacts even with the elevation 

compensation (due to illumination effects [27]). The pixel 

contains only light to moderate vegetation, except for the 

narrow riparian areas. Denser vegetation is found at higher 

altitudes in this region. The low vegetation density simplified 

the retrieval because it made the partitioning between 

vegetation and soil temperature less critical. 

Figure 2 shows the downscaled SMAP soil moisture with 

PALS soil moisture. The maps indicate that most of the soil 

moisture patterns observed with PALS are successfully 

replicated with the downscaling process. In some cases, the 

magnitude of soil moisture is notably different while the 

patterns are still clearly identifiable (such as on August 2). 

Some artifacts can be identified as well. For example, on 

August 13 in the southeastern corner the wet areas do not 

correspond to PALS soil moisture. This may be the result of 

poor quality LST data because some of the quality flags are 

raised around this area. The NDVI map in Figure 1 shows the 

riparian area in the middle of the pixel. The downscaled soil 

moisture on August 13 and 16 appear to have a systematic 

difference in the soil moisture between the east and west sides 

of the river, but this does not correspond to the PALS soil 

moisture. The different sides of the river (with opposite 

elevation gradients) may experience different temperature 

dynamics, which is the likely cause for this effect.  

Figure 3 shows the scatterplots and metrics for the 

comparison of the downscaled SMAP soil moisture and the 

PALS soil moisture. Figure 3a shows the result for 1-km 

resolution and Figure 3b shows the results after averaging both 

the downscaled and PALS soil moisture to 3-km resolution. In 

both cases the mean difference is very small (but non-zero). The 

 

 
Figure 1. SMAPVEX15 experiment domain. (a) Digital Elevation Model 

(DEM). (b) Normalized Difference Vegetation Index (NDVI) on August 2, 

2015. The square denotes the SMAP 36-km pixel used in the analysis and 
contours show the areas with elevation higher than 1500 m. 
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unbiased root mean square difference (ubRMSD) decreases and 

the Pearson correlation (R) increases with averaging, which is 

expected. The performance is comparable to that reported in the 

literature for similar types of retrieval situations (e.g., [28]; 

[29]; [13]). Notably, the performance at the 3-km resolution 

meets the SMAP performance requirement of 0.04 m3/m3 

ubRMSD [30].  

The uncertainty of the original SMAP soil moisture 

contributes to the uncertainty of the downscaled soil moisture. 

In order to quantify the effect of that uncertainty in this 

comparison, the aggregated PALS soil moisture within the pixel 

area was also downscaled using the same algorithm. The results 

were close to those reported in Figure 3 (for 1-km both RMSD 

and ubRMSD 0.052 m3/m3, mean difference 0 m3/m3 and 

correlation 0.655; for 3-km both RMSD and ubRMSD 0.035 

m3/m3, mean difference 0 m3/m3 and correlation 0.783). The 

main difference when compared to Figure 3 is the zero mean 

difference. The ubRMSD and correlation are also slightly better 

but it can be concluded that differences between PALS and 

SMAP soil moistures are not the drivers in the error figures. 

This was also expected based on the fact that [14] showed that 

the aggregated PALS soil moisture was very close to SMAP 

soil moisture  

Additionally, factors that could potentially degrade the 

comparison results include differences in observation depth and 

in observation time between the satellites. LST is sensitive to 

temperature at the very surface of the soil or vegetation whereas 

L-band microwaves penetrate several centimeters into the 

ground depending on the wetness conditions. As such, when 

SMAP and PALS made their measurements early in the 

morning, and MODIS at 10:30 AM, not only was the sensing 

depth different but conditions may have changed, especially in 

the top surface. 

V. CONCLUSIONS 

A downscaling analysis of the SMAP coarse resolution 

radiometer-based soil moisture product using MODIS data was 

conducted for a semiarid rangeland site. The approach uses 

LST- and NDVI-based SEE to downscale the SMAP soil 

moisture. The algorithm was applied over one pixel in the 

SMAPVEX15 domain and the downscaled soil moisture was 

compared with airborne based high resolution soil moisture. 

The results showed that the algorithm, adopted from previous 

 

 
Figure 2. The SMAP pixel area on the five PALS flights days. (top row) Altitude corrected MODIS land surface temperature. (2nd row) Soil evaporative efficiency. 
(3rd row) Downscaled SMAP soil moisture. (bottom row) PALS soil moisture.. 
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work presented in the literature, demonstrated reasonable skill 

in resolving higher resolution soil moisture features within the 

coarse scale pixel. The analysis of the approach benefited from 

the features of the study domain; that the surface temperature is 

controlled by soil evaporation, the topographical variation 

within the pixel area is relatively moderate, and the vegetation 

density is relatively low over most parts of the pixel (the latter 

two aspects also contribute to reliability of the SMAP soil 

moisture product). The analysis presented shows that the 

combination of the SMAP and MODIS data under these 

conditions can result in a high resolution soil moisture product 

with an accuracy suitable for many applications. 
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Figure 3. Downscaled SMAP soil moisture with respect to the PALS soil 

moisture: (left) 1-km resolution; (right) 3-km resolution. 

  


